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Kinematic anaiysis of rorated winged incIusions is often couch& in terms of ideaf simple shear. with reference to a 

specific modei based upon porphyroclasts of circular se&on. However, many naturaf winged inclusions are nor 

porphyroclasts; commordy their geometries, as wet1 as the orientation distribution of the inclusions themseIves, reflect 

the nun-ideal nature of the shearing defecation during which they formed. “Stair-stepw sigma-shaped geometries 

may refkct the immaturity of a structure developed in non-ideai shear, or a mature strucmre developed in ideal simple 

shear. “Stair-stepped” delta-shaped geometries indicate that deformation approximated to ideal simple shear. “In-plane” 

(delta-shaped) geometries and skew4 inclusion orientation distributions are indicators of non-ideal shear. 

Introduction 

The geometry of naturally occurring, rotated 
stiff inclusions is a potential@ useful indicator of 
shear-sense in non-coaxialiy deformed rocks (e.g., 
Simpson and S&mid, 1983; Davidson, 1984; 
Hanmer, 1984; Hanmer and Lucas, 1985; Pas- 
schier and Simpson, 1986; J-Looper and Hatcher, 
1988; but see also Bell, 1985; Bell et al., 1986). 
The ideal behaviour of stiff or rigid inclusions in a 
soft, viscous matrix subjected to a shearing defor- 
mation has been considered both theoretically and 
experimentally. Some workers have been con- 
cerned with the rotationat behaviour of round 
objects, such as garnet porphyroblasts (e.g.% Ro- 
senfeId, 1970; Ghosh, 1975; Dixon, 1976; Ghosh 
and Ramberg, 1978; Schoneveld, 1977; Powelf 
and Vernon, 1979; Williams and Schoneveld, 1981; 
Vissers, 1987; Manddl and Banerjee, 1987; Masuda 
and Ando. 1988). while others have extended the 
scope of the analysis to encompass stubby, ellipti- 
cal objects (e.g., Ghosh, 1977; Ghosh and Ram- 
berg, 1976; Hanmer, 1984; Freeman, 1985, 1987; 
Passchier, f987a 1988). Non-ideal shear is a com- 
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ponent of ideal simple shear plus a component of 
sho~e~ng across the shear plane. Whereas many 
of the cited theoretical studies have considered 
both ideal and non-ideal shearing deformations, 
laboratory simulations have so far been confined 
to ideal simple shear (Passchier and Simpson, 
1986; Van den Driessche and Bnm, 1987; Jordan, 
1987). Although the principles of rotational be- 
haviour in twudimension~ (plane strain) non- 
ideal flows (e.g., Ghosh and Ramberg. 1976) are 
now well established and fairly straight-forward to 
apply, kinematic analysis of natural examples of 
rotated inclusions is still most commonly couched 
in terms of ideal simple shear (e.g., Simpson and 
Schmid, 1983; Vernon, 1987; Takagi and Ito, 1988; 
Saftzer and Hodges, 1988; Hooper and Hatcher, 
1988). 

Experiments by Passchier and Simpson (1986) 
and Van den Driessche and Bnm (1987) elegantly 
simulate the deformation of a soft polycrystalline 
“mantle” about a rigid “core” in ideal simple 
shear. These experiments were specifically design- 
ed to reproduce sigma- and delta-shape geome- 
tries (Passchier and Simpson, 1986) of porphyro- 
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Fig. I. The “in-plane” (A) and “stair-step” (B) geometries of 
two eihptical winged inclusions superficially resemble each 
other. However, inclusion A has rotated dextrahy through the 
shear plane (SP) of the deformation. Its wings lie in a single 
material plane which passes through the centre of the inclusion 
and lies parallel to the shear plane, except i~ed~atel~ adja- 
cent to the inclusion. B has rotated sinistrahy. Its wings have 
rotated into the shear plane, whereas the inclusion is still 

markedly oblique. The structure forms a right-stepping “stair- 
step” wherein the wings are flats linked by the inclusion step. 
The lengths of the curved arrows are qualitatively proportional 
to rotation rates. The extensional (bold arrows) and compres- 
sional (fine arrows) quadrants of the flow are shown (see Fig. 

2). 

clasts and their attendant lateral appendages 
(wings), which commonly occur in naturally 
sheared rocks. Although the normalised recrystal- 
lisation rates (R/y) used, and the finite strains 
attained, in the two sets of exponents are differ- 
ent, the structures produced have a number of 
features in common. Firstly, the monocrystalline 
core rotates faster than, and is effectively uncou- 
pled from, the polycrystalhne mantle. Secondly, 
the overall geometry is that of a ‘Lstair-step’*~ 
wherein the attenuated mantle “flats” are linked 
by a “step”, represented by the core, or inclusion 
(Fig. 1, B). The latter feature is observed even at 
high shear strains (y > 11). However, many of the 
natural examples of rotated inclusions which I 
have observed in large-scale transcurrent ductile 
shear zones (Hanmer and Lucas, 1985; Hanmer, 
1988a) and ductile thrust zones (Hanmer and 
Ciesielski, 1984; Hanmer, 1988b) are not 
po~hyr~lasts; nor are their geometries ade- 
quately explained in the context of ideal simple 
shear. 

The aim of this contribution is to present the 
geometries of a variety of types of natural rotated 
inclusions and to examine the influence of flow 
strain regime on their development, in the context 
of a non-specific model of rotational behaviour. 
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Discussion will be restricted to two-dimensional 
deformation. 

In order to describe rotation, a frame of refer- 
ence is required. The classical reference frame for 
flow is most familiar to geologists (Ghosh and 
Ramberg, 1976; cf, Ramberg, 1975; Passchier, 
1987b), since it lies parallel to tangible deforma- 
tion structures. Hence, in any shearing deforma- 
tion, the shear plane of the deformation and its 
normal ( N) represents the abscissa and ordinate 
of the reference frame (Fig. 2). Orientations ((w) 
are measured with respect to N, in the same 
direction as the sense of shear. The numbered 
quadrants (Fig. 2) are fields of instantaneous ex- 
tension (I and 3) and shortening (2 and 4), 
delimited by the lines (planes in 3I3) of no instan- 
taneous lon~tudinal strain. The order of the 
quadrant numbers follows the direction of the 
sense of shear. All of the examples used in this 
contribution are taken from mylonites in well 
developed shear zones. Within the shear zones, 
transposition of pre-existing layering and the 
mechanical reduction of pegmatite veins to trains 
of isolated feldspar porphyroclasts, bear qualita- 
tive witness to the high magnitude of the shear 
strains involved in the deformation. Hence, all 
planar features in the examples can be expected to 
lie sub-parallel to the shear plane of the deforma- 
tion. Moreover, it was possible to confirm in the 
field that the foliation and layering in each of the 

Fig. 2. Schematic representation of the kinematic reference 
frame for noncoaxial flow used in this paper, drawn for the 
special case of ideal simple shear. The instantan~us strain 
ellipsoid is shown (X,, Y,, 2,; magnitudes of the principal 

instantaneous strains are exaggerated for clarity). See text. 
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examples lay parallel to the plane of the map-scale 
shear zone (Hanmer 1988a, 1988b) 

Overall geometry 

Consider a single stiff inclusion, with lateral 
appendages or wings, set in a soft viscous matrix 
subjected to an undefined shearing deformation. 
Such inclusions, monocrystalline or polycrystal- 
line, are generally stubby and elliptical; only rarely 
are they circular in section (Figs. 3, 4, 5 and 7). 
Many inclusions are comprised of porphyroclasts 
of feldspar (Fig. 3), often the relics of pegmatite 
which has suffered extensive dynamic grain size 
reduction (Davidson et al., 1982; Hanmer and 
Ciesielski, 1984; Hanmer, 198813; cf. Wintsch, 
1975). The fine grained, polycrystalline wings at- 
tached to these inclusions may be either mono- 
mineralic feldspar or quartzo-feldspathic aggre- 
gates. Often, the wings are straight and “m-plane”; 
that is they lie in a single material plane which 
passes through the centre of the inclusion and lies 
parallel to the shear plane of the deformation, 
except for the deflection of the wings immediately 
adjacent to the inclusion (Figs. lA, 3A, 3C and 7; 
see also Fig. 5). In other examples, the wings show 
a “stair-step” geometry (Figs. 1B and 3B; see also 
Fig. 4). 

Other inclusions are polycrystalline, often poly- 
mineralic. Their wings may be deformed pressure 
shadows (Fig. 4), or they may be bands of matrix 
material, entrained by the rotating inclusion. 
Several of the examples of inclusions illustrated 
here are simply thicker segments of otherwise thin 
rock layers and are not necessarily rheologically 
distinct from their wings (Fig. 5). The important 
points to retain here are that a general model for 
the rotational behaviour of winged inclusions (1) 
cannot be specific to a given process of wing 
differentiation, (2) must account for both “stair- 
step” and “in-plane” geometries and (3) must 
allow for cases where the wings are materially 
continuous with the inclusion, as well as cases 
where the wings and the inclusion are effectively 
uncoupled. 

A possible sequence of development stages of 
rotating winged inclusions is presented in Fig. 6 
(see also Simpson and S&mid 1983). In Passchier 

and Simpson’s (1986) terminology, stages 2 and 4 
(Fig. 6) represent sigma-shaped and delta-shaped 
geometries respectively. Occasionally, stages in 
such a sequence can be observed in natural winged 
inclusions. Referring to the examples in Fig. 7, the 
arrested “stair-step” geometry of the immature 
structure (A) can be described in terms of two 
elements. The first element comprises an inclusion 
of moderate to low ratio, oriented with its long 
axis lying in the extensional quadrants of the flow 
at approximately OL = 80”. The second element 
comprises a pair of straight wings of very high 
aspect ratio, attached to the apices of the inclusion 
and oriented in the extensional quadrants of the 
flow at (Y = 85 *. Had defo~ation continued, ex- 
ample A would have progressed to an “s” shaped 
“stair-step” geometry, wherein each straight wing 
would be parallel to the shear plane along its 
length, even adjacent to the inclusion, resembling 
the sigma-shaped porphyroclasts of Passchier and 
Simpson (1986; see Fig. 6, stage 2). Examples (B) 
and (C) represent more advanced stages of the 
same kind of structure (Fig. 7). It is important 
here to note that their wings lie “in-plane” and 
that the inclusions both lie in the compressional 
quadrants of the flow at a! approac~ng 135 *. 
They resemble the delta-shaped porphyroclasts of 
Passchier and Simpson (1986; see Fig. 6, stage 4). 

As the natural examples presented here il- 
lustrated, the overall geometry of many well devel- 
oped winged inclusions is one of “in-plane” 
straight wings, deflected out of their far-field 
orientation in the vicinity of the inclusion, rather 
than that of a “stair-step” configuration. The 
wings of the structure may show a “stair-step” in 
the less mature stages of development (Fig. 6, 
stages I and 2). The important points to note in 
the sequence illustrated here are that the wings 
rotate into the shear plane faster than the inclu- 
sion and the steps 1-3 (Fig. 6) require that the 
shear plane must extend in the shear direction in 
order to allow the wings to approach the “in- 
plane” configuration. Further shear strain has no 
effect on the orientation of the wings in the ma- 
ture structure, since they are at rest in the shear 
plane. Only the inclusion continues to rotate for- 
ward and in doing so it deflects the proximal part 
of the wings (Fig. 6). Even if a finite increment of 
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Fig. 4. Elliptical, dextrally rotated winged quartzite inclusion in a marble mylonite, observed in the XZ plane of the finite strain 
ellipsoid. Shear sense along the shear plane (parallel arrows), the extensional (bold arrows) and compressional (fine arrows) quadrants 
of the flow are shown. Triangular volume of matrix were entrained between the inclusion and its wings. The white marble wings, 
showing a subtle left-stepping “stair-step” geometry, are composed of relatively coarse, graphite-poor material, initially formed in 
pressure shadows in the extensional quadrants of the flow. The pressure shadows, the right-hand one of which is particularly well 

preserved, have rotated toward the shear plane with progressive deformation. The proximal parts of the wings have been carried by 
the rotating inclusion into the compressional quadrants of the flow. Central Metasedimentary Belt, Grenville Province, Ontario 

(Carlson et al., 1990). Looking north-northeast. 

ideal simple shear, starting with stage 3 (Fig. 6) 
leads to the development of stage 4 (Fig. 6), the 
total strain still represents a finite non-ideal shear 
since stage 3 implies that extension has occurred 
along what will eventually become the shear plane 
of the strain increment we are considering. The 
only exception is the special case of a porphyrob- 
last which grew after the wings already lay parallel 
to the shear plane. The point to retain here is that 
“in-plane” geometries form when the entire struc- 
ture is extended in the shear plane, either contem- 
poraneously with, prior to, or after imposition of 

the shearing component of the defo~ation. Such 
shear-parallel extension is a condition of two-di- 
mensional non-ideal shear (Ghosh and Ramberg, 
1976). The corollary to the foregoing is that those 
mature winged inclusions which preserve a “stair- 
step” in their overall geometry must have formed 
in flow approximating to ideal simple shear. 

Inclt4sion orienf~~ion 

The foregoing has considered the disposition of 
lateral wings with respect to the inclusion and the 

Fig. 3. Rotated winged feldspar po~h~~l~ts in mylonites, observed in the XZ piane of the finite strain ellipsoid. Derived by the 
mechanical degradation of pegmatite, qu~~tively indicative of the high magnitude of the finite strain. Shear sense along the shear 
plane (parallel arrows), the extensional {bold arrow) and shortening (fine arrows) quadrants of the flow are shown. Note the 
triangular volumes of matrix entrained between the inclusion and the wings. A. The porphyroclast is circular in cross section. The 
wings are straight, except adjacent to the porphyroclast, and show an “in-plane” geometry. (B. The long axis of the elliptical 
porphyroclast lies in the compressional quadrants of the flow at 90° e a i: 135O. The wings are straigbt, except adjacent to the 
porphyroclast, and show a “stair-step” geometry, stepping to the left. C. Four porphyroclasts showing geometry of Fig. 1A (arrows), 
derived by the mechanical degradation of granitic pegmatite in a sinistrally sheared ultramylonite. All four inclusions lie at (Y circa 
120°-130°. Note the absence of fold structures in the mylonitic foliation; the porphyroclasts are not simply the short limbs of 
asymmetrical folds. (A) and (B) Great Slave Lake Shear Zone, NWT (Hanmer, 1988a), (C) Parry Sound thrust zone, Grenville 

Province, Ontario (Davidson, 1984). Looking northeast. 
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Fig. 5. A dextrahy rotated “swell” in an heterogeneously extended amphibohte dyke in a mylonite matrix, observed in the XZ plane 
of the finite strain ellipsoid. Shear sense along the shear plane (parallel arrows), the extensional (bold arrows) and compressional (fine 
arrows) quadrants of the flow are shown. The long axis of the “inclusion” lies in the compressional quadrants of the flow, at a 
approaching 135. The wings are materially continuous with the ‘inclusion’ and show an “in-plane” geometry. Note the development 
of pegmatite (light grey) in the extensional quadrants of the flow, adjacent to the ‘inclusion’. Great Slave Lake Shear Zone, NWT 

(Hanmer, 1988a). Looking down. 

shear plane. Consider now the orientation of the 
inclusion. The long axis of the inclusion can make 
any angle (a) with the normal to the shear plane. 
However, I am struck by the frequent occurrence 
of field examples where the long axis of the inclu- 
sion lies within the compressional quadrants of 
the flow, at LY approaching 135 O. Given the small 

c 

Fig. 6. A sequence of progressively developed geometries is 
illustrated starting with an inclusion and its wings oriented in 
the extensional quadrants of the flow (see Simpson and S&mid 

1983), but undergoing non-ideal shear. Discussed in text. 

number of examples in any given outcrop, it is 
difficult to support this contention statistically. 
However, if valid, it is difficult to explain in the 
context of simple shear (Hanmer 1984; see Dis- 
cussion). Quantitative support for the field-based 
observation is derived from the analysis of 
po~hyr~last-being mylonites. Data on por- 
phyroclasts in mylonites from the dextral trans- 
current Great Slave Lake Shear Zone, Canadian 
Shield (Hanmer, 1986, 1988a) and from the 
sinistral transcurrent Median Tectonic Line, Japan 
(Tagaki and Ito, 1988) are presented in Fig. 8. 
Each population is mildly, but systematically 
skewed towards the compressional quadrant of the 
flow, such that the mode lies in the range (90 o < (Y 
< 135 ’ ). These results are encouraging. However, 
theory predicts that the orientations of those in- 
clusions at rest are a partial function of the inclu- 
sion aspect ratio (Ghosh and Ramberg, 1976; 
Hanmer, 1984; Passchier, 1987a). Two sets of data 
from Great Slave Lake Shear Zone (Fig. SE, F) do 
not show a detectable correlation between inclu- 
sion aspect ratio (R) and orientation (a). This 
presumably reflects deviation of the natural case 
from the ideal model due to non-Newtonian be- 
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Fig. 7. Dextrally rotated winged feldspar porphyro-clasts in a banded, granoblastic ultramylonite. Derived by the mechanical 
degradation of pegmatites, ~u~tatively indicative of the high magnitude of the finite strain. Observed in the XZ piane of the finite 
strain ellipsoid. Shear sense along the shear plane (parallel arrows), the extensional (bold arrows) and ~ompr~ion~ (fine arrows) 
quadrants of the flow are shown. Both immature sigma-shapes (A) and mature delta-shaped (B and C) stages are represented. Note 
that in (B) and (C) the wings lie “in-plane” and that the inclusions both lie at (Y - 135 O. Discussed in text. Central Metasedimentary 

Belt boundary zone, Grenville Province, Quebec (Hanmer and Ciesielski, 1984). Looking down. 
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Fig. 8. (A) and (B) are data for porphyroclasts in mylonites from the dextral transcurrent Great Slave Lake Shear Zone, NWT 
(Hanmer 1986, 1988a). (C) and (D) are data for porphyroclasts in mylonites of the sin&al tmnscurrent Median Tectonic Line, 
Japan, taken from Tagaki and fto (1988). Each population is mildly, but systematically skewed towards the compressional quadrant 
of the flow. Two sets of data from Great Slave Lake Shear Zone (E and F) do not show a detectable correIation between inclusion 

aspect ratio (R) and orientation (a). Discussed in text. 
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haviour of the matrix, deformability of the inclu- 
sions, deviation from elliptical inclusion shape and 
interference between inclusions. The observed 
break-down of the theoretical model in Fig. 8E 
and F calls for caution in interpreting the data 
sets. However, I suggest that the systematic skew- 
ness in Fig. SA-D is significant and warrants 
discussion. 

Rotation in shearing dejormations 

For clarity, it is necessary to define terms used 
to refer to the nature of the flow. Strain rate ratio 
(S,) and the kinematical vorticity number (W,) 
can both be used to describe flow in terms of the 
ratio of its distortional and rotational compo- 
nents. Each has advantages and disadvantages. 
The kinematical vorticity number ( W,) is a direct 
expression of the relationship between the rota- 
tional and distortional components of the flow, 
formulated in tensor notation (Means et al., 1980; 
Passchier, 1986). As pointed out by these authors, 
it is mathematically elegant and can be used to 
describe spinning or pulsating flows which fall 
outside of the pure shear-simple shear spectrum. 
On the other hand, the strain rate ratio is an 
indirect fo~ulation couched in terms of ideal 
flow types (S, = pure shear strain rate/simple 
shear strain rate, wherein the directions of maxi- 
mum elongation rate and shear strain rate respec- 
tively of the two strain components are parallel; 
Ghosh and Ramberg, 1976). S, has the anthro- 
pocentric advantage of being formulated in geo- 
logically familiar terms and I will use it t~ou~out 
this discussion. 

The common occurrence of asymmetrical ex- 
tensional shears in shear zone rocks (e.g., Platt 
and Vissers, 1980; White et al., 1980) strongly 
suggests that many shear zones do not correspond 
to ideal simple shear (cf. Weijermars and Rondeel, 
1984). In a ~nst~t-volume deformation, the sim- 
plest way to materially balance such extension is 
by shortening normal to the shear plane, in two- 
dimensional non-ideal shear (S, > 0). 

The relationship between the rotation rate of 
stiff inclusions and passive markers and their 
orientation (a) is partly a function of the strain 
rate ratio (S,; Fig. 9). However, the rotation rate 
of an inclusion is also a function of its aspect ratio 
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Fig. 9. Calculated curves of ideal rotational behaviour of rigid 
inclusions and passive markers set in a Newtonian viscous 
matrix for strain rate ratios (S,) of 0 (A), 2 (B) and 10 (C). 
Curves are drawn for inclusions of aspect ratio (R) of I and 2, 
for inclusions of critical aspect ratio (R, =1.28 and 1.05) and 
for passive markers (P) in normal&d rotation rate (4/p) vs. 
orientation (a; measured with the sense of shear, from the 
shear plane normal) space. Negative values of i/y indicate 
back-rotation (arrows). Horizontal scale in B and C as in A. 
These idealised curves should only be taken as a guide to the 
behaviour of natural examples, where the inclusions may not 
be rigid and the matrix viscosity may not be Newtonian. 
Discussed in text. Modified from Ghosh and Ramberg (1976). 

(R). These relationships have very important geo- 
logical consequences. The rotational behaviour of 
inclusions and markers can be represented in terms 
of rotation rate (6; normalised with respect to the 
shear strain rate 9) and orientation ((u) with re- 
spect to the shear plane normal (Fig. 9; Ghosh, 
1975, 1977; Ghosh and Ramberg, 1976). The rota- 
tional behaviour of a rigid inclusion whose aspect 
ratio is greater than about 6 is essentially the same 
as that of a passive marker (curve P). Curves for 
more elongate inclusions cut the abscissa (6/y = 0) 
twice, while those for stubbier inclusions do not 
cut it at all. Curves which graze the abscissa at a 
single tangent point represent inclusions of criticai 
aspect ratio (subscript “c” as in R,, a,). 

In any given flow, all of the rotation rate curves 
pass through two common cross-over or inflection 
points, the orientations of which are a function of 
the strain rate ratio (S,). Thus in ideal simple 
shear (S, = 0; Fig. 9A), a passive marker oriented 
at 0” <(Y <45” rotates faster than an equant 
inclusion, whereas the relative rotation rates are 
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inverted if the passive marker lies at 45O < a < 
90 O. However, compare this with the relative rota- 
tion rates for inclusions and markers at 0’ < a < 
45 o and 45’ < a < 90” for strongly non-ideal 
shear (S, = 10; Fig. SC); passive markers rotate 
faster than inclusions for most orientations in the 
extensional qua~~ts (a < 90 o ). With increasing 
S,, the curves of rotational behaviour migrate 
downward and toward the right, such that the 
left-hand rest-position (6/q = 0) for the curve P 
always lies at a = 90’ (Fig. 9). Consequently, the 
rotational singularity 4/q = 0 for inclusions of 
critical aspect ratio (R,) migrates from ff, = circa 
90 * towards CY, = circa 135 O, as the critical aspect 
ratio approaches I.. Note that in non-ideal shear 
inclusions rotate away from rest-positions at a > 
a, (Fig. 9 dottjed field) towards rest-positions at 
a K a, (Fig. 9 rules field; Hanmer 1984). 

The foregoing and Fig. 9 can be summarised as 
follows: In progressive ideal simple shear, all in- 
clusions rotate with the same sense as the imposed 
shear (Fig. 9A). While the rotation rate for all 
non-circular inclusions decreases as the long axis 
of the inclusion approaches the shear plane, only 
passive markers and inclusions of high aspect ratio 
(curve P) come to rest (&J’$ = 0) in the shear 
plane. Deviation from ideal simple shear (S, > 0) 
and the ovation of the curves of rotational be- 
haviour (Fig. 9) introduces a field of back-rotation 
(Fig. 9B, C). Consequently, the orientation of an 
inclusion at rest (4/q = 0) is a partial function of 
its aspect ratio. An inclusion whose long axis lies 
close to a potential rest position at a > a, tends to 
rotate (backwards or forwards) towards the rest 
position oriented at 90° -K a < a,. The ideal range 
of occupied rest positions for a given strain rate 
ratio (S,) is bounded by the left-hand rest position 
of curve P (a = 90 ” ) and the rest position of 
inclusions of critical aspect ratio Rc (90° < 01, < 
135O; see also Passchier, 1987a, 1988). Inclusions 
of aspect ratio less than R, have no rest position 
and rotate ~nt~uously with the same sense as the 
imposed shear. 

Discussion 

Without attempting to apply the absolute num- 
bers derived in Fig. 9 to natural examples, I sub- 

mit that the important points to retain here are 
the following (1) Wings oriented in the range 

45 o < a < 90 ’ will only rotate faster than stubby 
inclusions oriented in the same range (Figs. 6 and 
7) if the flow is non-ideal shear. (2) The distribu- 
tion of rest positions occupied by inclusions in a 
strongly deformed matrix will only be asymmetri- 
cal with respect to the shear plane if the flow is 
non-ideal shear. These points guide kinematic in- 
terpretation of the natural examples illustrated in 
this contribution: 

(a) Sigma-shaped winged inclusion geometries, 
where the i~c~~~~n is ~~ii~i~c~, form when the 
deformation path deviates from ideal simple shear. 
They may represent the immature stages of devel- 
oping delta-shaped geometries (Figs. 6 and 7). 

(b) “In-plane”, delta-shaped winged inclusions 
indicate that the deformation path deviates from 
ideal simple shear (Figs. 3A and C, 5 and 7). 
“Stair-step”, delta-shaped inclusions indicate that 
the deformation path is a close approbation to 
ideal simple shear (Figs. 3B and 4). 

(c) Stubby, elliptical inclusions will tend to 
come to rest with their long axes oriented at a 
approaching 135’ in strongly non-ideal shearing 
deformations (Figs. 3B and C, 5, 7 and 8). 

Figure 9 also predicts that there should be a 

close correlation between the orientation (a) and 
the aspect ratio (R) of an inclusion. However, the 
data illustrated in Figs. 8E and F suggest that the 
theoretical model is less than perfect when applied 
to natural cases. 

The foregoing is also pertinent to refining our 
understanding of the porphyroclast geometries de- 
scribed by Passchier and Simpson (1986) and 
Hooper and Hatcher (1988). The “stair-step” 
geometries of the sigma and delta winged 
porphyroclasts in the experiments of Passchier 
and Simpson (1986) are readily explicable in terms 
of ideal simple shear. However, the sigma 
porphyroclasts in their models are circular in sec- 
tion (cf. point (a) above). If they were elliptical, 
with the long dimension of the porphyroclast still 
orientated in the extensional quadrant (Simpson 
and S&mid 1983, fig. 4), then the relative rotation 
rates of the wings and the inclusion would be most 
readily explained in terms of non-ideal shear. 

Hooper and Hatcher (1988) have recently de- 



254 S. WANMER 

scribed wingless porphyroclasts in mylonitic rocks 
observed with their long dimensions oriented in 
the range 90” < a: < 135” (compare with Fig. 8). 
They have attempted to extend Pass&& and Sim- 
pson’s (1986) analysis to account for what they 
term “theta” porphyroclasts. The remarkable 
characteristic of theta porphyroclasts is the orien- 
tation of their long dimensions in the compres- 
sional quadrants of the flow, somewhere in the 
range 90” < cx < 135”. However, the rationale for 
the kinematic significance attributed to the orien- 
tation of the inclusions is unclear since “The 
theta-type porphyroclast will, however, still be 
rotating. The characteristic non-coaxial symmetry 
of the regime will still be preserved.. . ” (Hooper 
and Hatcher, 1988, p, 16). I submit that the stubby 
elliptical inclusions have come to rest at positions 
determined by the non-ideal nature of the flow. 

In summary, the overall geometry of many 
natural examples of winged inclusions is indepen- 
dent of the process of differentiation of the wings 
from the inclusion” Moreover, the geometries of 
the rotated winged inclusions, as well as the orien- 
tation distribution of the inclusions themselves, 
reflect both the non-ideal nature and the sense of 
the shearing defo~ation during which they 
formed. “Stair-stepped” sigma-shaped geometries 
may reflect the immaturity of a structure devel- 
oped in non-ideal shear, or a mature structure 
developed in ideal simple shear. “Stair-stepped” 
delta-shaped geometries indicate that the defor- 
mation approximated to ideal simple shear. “In- 
plane” ~delta-shape) geometries and skewed in- 
clusions orientation dist~butions are indicators of 
non-ideal shear. 
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