
INTRODUCTION
The origin of voluminous anorthosite, mangerite, charnockite, granite,

and related granitoids (AMCG complexes; Emslie, 1978) in the Mesopro-
terozoic Grenville province is a matter of considerable debate (e.g., Ashwal,
1993). However, although there are several divergent views concerning the
magma genesis and geochemical evolution of these rocks, there has been
general agreement that they were emplaced in an anorogenic tectonic setting.
The paradox that has emerged from recent U-Pb dates on AMCG complexes
is that their ages broadly coincide with the timing of thrusting along first-
order contractional shear zones. In the central Grenville province, U-Pb dat-
ing has outlined two distinct pulses of AMCG-type magmatism, at ca.
1.16–1.14 Ga and 1.08–1.05 Ga (Higgins and van Breemen, 1996; Corrigan
and van Breemen, 1996). Although both periods of magmatism are locally
accompanied by extension, they were synchronous with convergent tecton-
ics at the scale of the orogen. We propose a model that accounts for both
AMCG pulses in an overall convergent orogen by two consecutive cycles of
crustal thickening followed by convective thinning of the continental litho-
sphere (e.g., Houseman et al., 1981).

GEOLOGIC SETTING
The Grenville province in Canada (Fig. 1) comprises two major lithotec-

tonic elements: (1) a parautochthonous belt formed of Archean and Paleo-
proterozoic to Mesoproterozoic rocks from the foreland that were reworked
during the Grenvillian orogeny, and (2) allochthonous terranes tectonically
accreted onto the parautochthonous belt and separated from the latter by the
southeast-dipping allochthon boundary thrust (see Rivers et al., 1989, and
Davidson, 1995, for a detailed overview). In the central and southwestern
Grenville Province (Fig. 2), the allochthonous terranes consist mainly of the
Central Metasedimentary Belt and the Central Granulite Terrane (Wynne-
Edwards, 1972). Except for minor intrusions and dikes, magmatism of
Grenvillian age (1.19–1.00 Ga) is restricted to the allochthonous terranes. A
summary of timing of sedimentation, deformation, and magmatism is pre-
sented in Figure 3.

Ca. 1.19 to 1.13 Ga: Crustal Thickening, Syncollisional to 
Postcollisional Extension, AMCG Magmatism, and Sedimentation

Any model of the tectonic, magmatic, and metamorphic evolution of the
Grenvillian orogeny ca. 1.19–1.13 Ga must reconcile an overall collisional

tectonic setting with the production of anorthosite massifs, the emplacement
of mafic and ultramafic dikes, the metamorphism of granulite facies, and the
production of intramontane sedimentary basins. Northwest-directed thrust-
ing along the Central Metasedimentary Belt boundary thrust zone (Fig. 2)
was well underway by ca. 1.19 Ga and coincided with the closure of the
Elzevir back-arc basin (Hanmer and McEachern, 1992; McEachern and van
Breemen, 1993). Granulite facies thrusting dated at ca. 1.16 Ga within the
Parry Sound domain (van Breemen et al., 1986; Wodicka et al., 1996) and
along the base of the Cabonga allochthon (Friedman and Martignole, 1995)
signifies that crustal thickening may have continued until that period
(Fig. 3). Thus, evidence for deformation related to contractional tectonics
appears to be confined to the interval of 1.19–1.16 Ga but may have locally
persisted beyond this age bracket.

Magmatism both overlapped with and outlived crustal shortening. Dur-
ing the interval 1.16–1.13 Ga, the Marcy (Chiarenzelli and McLelland,
1991), Morin (Doig, 1991), and Lac St. Jean (Higgins and van Breemen,
1996) AMCG complexes were emplaced in the Central Granulite Terrane
(Fig. 3). A-type monzonites, granites, and syenites emplaced within the
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Figure 1. Map of Grenville province showing distribution of Parautoch-
thonous Belt and overlying allochthonous terranes.Toothed line sepa-
rating Parautochthonous Belt from allochthonous terranes is Alloch-
thon Boundary Thrust. Modified after Rivers et al. (1989).
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Frontenac terrane (Central Metasedimentary Belt) between 1.18 and
1.16 Ga are related to the AMCG suites described above (van Breemen and
Davidson, 1988; Lumbers et al., 1990). Crustal extension coeval with
1.18–1.13 Ga magmatism is indirectly indicated by the formation of sedi-
mentary basins. In the Mauricie region, the St. Boniface metasedimentary
rocks, which include highly aluminous metapelitic rock interlayered with
rare, metre-thick bands of quartzite and marble, were deposited between
1.18 and 1.15 Ga (Corrigan and van Breemen, 1996). The 1.14–1.12 Ga
Twelve Mile Bay quartzite (Wodicka et al., 1996) and the 1.15–1.10 Ga
Flinton Group (Sager-Kinsman and Parrish, 1993) also fall more or less
within this age range (Fig. 3). U-Pb dating of detrital zircon grains in all
three basins suggests a within-orogen source of sediments (Sager-Kinsman
and Parrish, 1993; Wodicka et al., 1996; Corrigan and van Breemen, 1996).
Their present location well within the orogen interior suggests that they may

be remnants of pull-apart or rifted basins developed on tectonically over-
thickened crust (e.g., Molnar and Tapponnier, 1978). 

Ca. 1.12–1.09 Ga: Renewed Crustal Thickening
The cessation of AMCG-type magmatism in the southwestern Grenville

province at ca. 1.13 Ga was followed by renewed northwest-directed thrust-
ing in the orogen interior, resulting in penetrative deformation at granulite to
uppermost amphibolite facies throughout most of the allochthonous belts.
High-grade metamorphism and deformation affected the Flinton Group be-
tween 1.15 and 1.08 Ga (Sager-Kinsman and Parrish, 1993). Renewed north-
west-directed thrusting occurred in the Parry Sound domain ca. 1.12 Ga
(Wodicka et al., 1996) and along the Seguin and Moon River thrust sheets ca.
1.11 Ga (van Breemen and Davidson, 1990; Nadeau and Hanmer, 1992).
Along the Mauricie transect (Fig. 2), granulite facies thrusting in the approx-
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Figure 2. Generalized map of
central and southwestern
Grenville Province showing
major geologic features. Ab-
breviations are as follows:
A—Adirondacks; B—Bancroft
terrane; CCsz—Carthage-
Colton shear zone;CMBBTZ—
Central Metasedimentary Belt
boundary thrust zone; E—
Elzevir terrane; F—Frontenac
terrane; FG—Flinton Group;
Lsz—Labelle shear zone;
LSJ—Lac St.Jean;M—Morin;
PB—Parautochthonous Belt;
PS—Parry Sound domain;
PSM—Portneuf–St. Maurice
domain; SB—St. Boniface
metasediments;Tsz—Tawachi-
che shear zone. Modified after
Wynne-Edwards (1972) and
Rivers et al. (1989).

Figure 3. Summary of tectonic and magmatic events that affected central and southwestern Grenville Province from 1200 Ma to 1050 Ma. Orogen
margin is interpreted as part of Grenville province lying northeast of Allochthon Boundary Thrust (CMBbtz in study area). Orogen interior includes
Central Metasedimentary Belt, Central Granulite Terrane, and Mauricie transect. Orogen interior is interpreted as main region of lithospheric thick-
ening and plateau development during Grenvillian orogeny in time interval shown.



imate interval 1.12–1.09 Ga affected both the St. Boniface metasedimentary
rocks and the 1.15 Ga granitoids (Corrigan and van Breemen, 1996). 

Ca. 1.09–1.05 Ga: Second Phase of Extension and AMCG-type 
Magmatism in an Overall Compressional Orogen

During the interval 1.09–1.05 Ga, a second pulse of AMCG-type mag-
matism occurred within the allochthonous terranes (Fig. 3), but produced
much less anorthosite than the older one (e.g., Higgins and van Breemen,
1996; Corrigan and van Breemen, 1996). Coeval plutons of syenitic, ultra-
potassic, and potassic alkaline composition were emplaced in the Elzevir
terrane of the Central Metasedimentary Belt (Corriveau et al., 1990). All the
above are virtually undeformed and have not been subjected to regional
metamorphism. 

On a broader scale, the emplacement of the younger AMCG and potassic
plutons was coeval with the exhumation of the Central Granulite Terrane by
tectonic denudation (Corrigan, 1995). The oblique extensional Tawachiche
shear zone, which bounds the Central Granulite Terrane to the east, was ac-
tive from ca. 1.09 Ga to at least 1.05 Ga (Corrigan and van Breemen, 1996).
Along the western edge of the Central Granulite Terrane, extension was ac-
commodated by the northwest-side-down Carthage-Colton shear zone
(Heyn, 1990). To the northeast, the kinematic history of the Labelle shear
zone is unclear, but ductile deformation along it postdates 1.08 Ga (Martig-
nole and Corriveau, 1991). Monazite cooling ages of ca. 1.09 Ga from the
eastern edge of the Central Granulite Terrane along the Mauricie transect are
consistent with ages obtained for movement along the extensional faults,
and hence with cooling by tectonic denudation (Corrigan and van Breemen,
1996). Between 1.09 and 1.05 Ga, as the Central Granulite Terrane was ex-
humed and the younger AMCG plutons were emplaced in the orogen inte-
rior, thrusting at high metamorphic grade localized at the orogen margin
along the Central Metasedimentary Belt boundary thrust zone (van
Breemen and Hanmer, 1986; Hanmer and McEachern, 1992).

TECTONIC MODEL
The association of crustal thickening, emplacement of mafic dikes and

voluminous mantle-derived melts, sedimentation within an intraplate set-
ting, and syncollisional extension can be best explained by replacement of
the continental mantle lithosphere by asthenosphere during crustal shorten-
ing. Whether this is achieved by lithospheric delamination (Bird, 1979) or
convective thinning of the lithosphere (Houseman et al., 1981), some of the
consequences are similar. These are (1) juxtaposition of hot asthenosphere
with thinned continental lithosphere, (2) increase in potential energy of the
crust consequent upon increase in surface elevation, and (3) a detectable
thermal pulse in the extended crust. The former two may produce mantle-
derived melts, extension, and the development of intramontane sedimentary
basins within the collisional plateau (e.g., Platt and England, 1993).

The ca. 1.19 Ga continent-continent collision that followed the Andean-
type evolution of the southeastern margin of the Grenville province
(McEachern and van Breemen, 1993) would have resulted in accelerated
shortening and thickening of the continental lithosphere (Fig. 4A). Delami-
nation or convective removal of the thermal boundary layer may then have
occurred, leading to uplift and subsequent extensional collapse of the colli-
sional plateau, with concomitant formation of sedimentary basins and high-
temperature, mantle-derived melts (Fig. 4B). Once the normal lithosphere
thickness is re-established, and if the boundary conditions permit, compres-
sional deformation may resume in the interior of the thinned and thermally
weakened orogen. This is consistent with the renewal of crustal shortening
and thrusting in the Grenville orogen interior during the interval
1.12–1.09 Ga, which is inferred to have led to a second phase of thickening
of the crust and lithosphere that culminated at ca. 1.09 Ga (Fig. 4C). The
rethickened root of the lithospheric mantle may have again been convec-
tively thinned, leading to a second cycle of isostatic uplift of the overthick-
ened crust, extensional collapse, exhumation of the Central Granulite Ter-
rane, and the generation and emplacement of the younger phase of

high-temperature AMCG and potassic plutons (Fig. 4D). During this period,
thrusting was again localized at the orogen margin, along the Central
Metasedimentary Belt boundary thrust zone. Examples of coeval develop-
ment of extensional plateaus in orogen interiors and thrusting at orogen mar-
gins are well documented in the literature about Mesozoic orogens (e.g.,
Molnar and Lyon-Caen, 1988), but the process has not previously been in-
ferred for a Proterozoic orogen.

DISCUSSION
Acceptance of the convective thinning model for the tectonomagmatic

evolution of the Grenvillian orogeny has important implications. It has been
suggested that anorthosite plutonism is associated with ponding of olivine
tholeiite basalt at the base of the crust in an extensional tectonic setting (e.g.,
Emslie, 1978). Replacement of lithosphere by asthenosphere predicted by
convective thinning models provides a viable mechanism for such a process
during convergent tectonism, and does not necessitate the postulation of a
mantle plume beneath a supercontinent (e.g., Hoffman, 1989) nor postcolli-
sional extension (e.g., Windley, 1991). With respect to the Grenvillian
orogeny, the convective thinning model provides a plausible way to explain
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Figure 4. Series of schematic cross sections showing tectonic and
magmatic evolution of Grenvillian orogeny during interval 1.20–1.05 Ga.
In A, B, and C, symmetrical geometry for orogen is assumed, and colli-
sion with continent (continent x) is inferred for clarity. D shows the final
configuration of orogen exposed in North America. See text for expla-
nations. Abbreviations as in Figure 2.



the episodic nature of AMCG-type magmatism synchronous with contrac-
tional tectonics. In addition, it provides a mechanism to explain the impor-
tant contribution of mantle-derived heat that is necessary for the formation
of anorthosite (Emslie, 1978), which is also implied from the generally high
ambient grade of metamorphism accompanying AMCG-type magmatism.
The duration of lithospheric thickening and subsequent convective removal
of lithosphere was ~30 m.y. for each cycle, which is consistent with the du-
ration of lithospheric overthickening and mechanical restoration predicted
by Houseman et al. (1981).

Another important consequence of convective removal of the mantle
lithosphere is the production of highly potassic melts (McKenzie, 1989; Kay
and Mahlburg-Kay, 1993). Shoshonitic volcanism in the Tibetan plateau, for
example, is thought to be a likely product of convective thinning of the lithos-
phere (Turner et al., 1996). This may provide a more appropriate tectono-
magmatic model for shoshonitic and other potassic plutons emplaced in the
Grenville orogen that are currently interpreted on the basis of geochemistry
as the product of island arc magmatism (Corriveau et al., 1990).
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